Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Qiang Hu, ${ }^{\text {a }}$ Yu-Qing Shang, ${ }^{a}$ Guan-Ping Yu, ${ }^{\text {a }}$ Wei-Hua Li, ${ }^{\text {b }}$ Liang-Zhong $\mathrm{Xu}^{\mathrm{a} *}$ and Bao-Rong Hou ${ }^{\text {c }}$

${ }^{\text {a }}$ College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China, ${ }^{\mathbf{b}}$ College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266003, People's Republic of China, and 'Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, People's Republic of China

Correspondence e-mail: qknhs@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=294 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.031$
$w R$ factor $=0.087$
Data-to-parameter ratio $=14.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0] Printed in Great Britain - all rights reserved

4-(2-Hydroxybenzylideneamino)-3-(1H-1,2,4-triazol-1-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{OS}$, the dihedral angles made by the thione-substituted triazole ring with the other triazole ring and the benzene ring are $71.56(2)$ and $47.89(3)^{\circ}$, respectively. Inter- and intramolcular hydrogen-bond interactions stabilize the structure.

Comment

Recently, compounds containing the $1 H-1,2,4$-triazole group have attracted much interest because compounds containing a triazole ring system are well known as efficient fungicides in pesticides, and have good plant-growth regulatory activity for a wide variety of crops (Xu et al., 2002). In addition, amineand thione-substituted triazoles have been studied as antiinflammatory and antimicrobial agents (Eweiss et al., 1986; Awad et al., 1991). In a search for new triazole compounds with better biological activity, the title compound, (I), was synthesized. We report here the crystal structure of (I).

(I)

Bond lengths and angles of the triazole rings (Table 1) are in agreement with those in previous reports (Li et al., 2005; Xu et al., 2005). The molecule exists in the thione tautomeric form, with an $\mathrm{S}=\mathrm{C}$ distance of $1.6762(15) \AA$, which indicates substantial double-bond character (Escobar-Valderrama et al., 1989). The planes C1-C3/N1/N2/N3 and C6-C12/N7/O1 make dihedral angles of 71.56 (2) and 47.89 (3) $)^{\circ}$ with the thionesubstituted triazole plane $\mathrm{C} 4 / \mathrm{C} 5 / \mathrm{N} 4 / \mathrm{N} 5 / \mathrm{N} 6 / \mathrm{S} 1$. There are some intra- and intermolecular hydrogen-bond interactions which stabilize the crystal structure (Table 2).

Experimental

A mixture of 4-amino-3-(1,2,4-triazol-1-yl)-1 H -1,2,4-triazole-5(4H)thione $(0.02 \mathrm{~mol})$ and 2 -hydroxybenzaldehyde $(0.02 \mathrm{~mol})$ was refluxed at 391 K for $15-20 \mathrm{~min}$ in glacial acetic acid. The mixture was then filtered and crystallized from ethanol to afford the title compound (5.7 g , yield 95%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Received 12 September 2005 Accepted 23 September 2005 Online 28 September 2005

Figure 1
View of the title compound (I), with displacement ellipsoids drawn at the 40\% probability level.

Figure 2
A packing diagram of the molecule of the title compound, viewed down the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{12} \mathrm{H}_{11} \mathrm{~N}_{7} \mathrm{OS} \\
& M_{r}=301.34 \\
& \text { Monoclinic, } P 2_{2} / c \\
& a=8.3335(9) \AA \\
& b=14.9777(16) \AA \\
& c=11.4724(12) \AA \\
& \beta=107.990(2)^{\circ} \\
& V=1361.9(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Data collection

Bruker SMART CCD area-detector
\quad diffractometer
φ and ω scans
Absorption correction: multi-scan
$\quad(S A D A B S ;$ Sheldrick, 1996$)$
$\quad T_{\min }=0.941, T_{\max }=0.951$
7581 measured reflections
$D_{x}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 4407 reflections
$\theta=2.9-26.4^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=294$ (2) K
Block, yellow
$0.24 \times 0.22 \times 0.20 \mathrm{~mm}$

2794 independent reflections
2360 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.019$
$R_{\text {max }}=26.4^{\circ}$
$h=-10 \rightarrow 7$
$k=-16 \rightarrow 18$
$l=-14 \rightarrow 13$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.031$
$w R\left(F^{2}\right)=0.087$
$S=1.03$
2794 reflections
198 parameters
H atoms treated by a mixture of independent and constrained refinement

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0406 P)^{2}\right. \\
& \quad+0.4772 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3} \AA^{-3} \\
& \Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right.$).

S1-C5	$1.6762(15)$	N5-C5	$1.3392(19)$
N4-C4	$1.2941(19)$	N6-N7	$1.3981(16)$
N4-N5	$1.3730(18)$	N7-C6	$1.2799(18)$
C6-N7-N6	$117.05(12)$	N2-C3-C4	$111.71(12)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N5-H5 $\cdots \mathrm{N} 1^{\mathrm{i}}$	$0.89(2)$	$1.97(2)$	$2.8389(19)$	$168(2)$
O1-H1 3 N	$0.83(2)$	$2.32(2)$	$2.9324(17)$	$131(2)$
O1-H1 N^{H}	$0.83(2)$	$2.03(2)$	$2.7051(17)$	$137(2)$
C3-H3B $\cdots \mathrm{S} 1^{\mathrm{ii}}$	0.97	2.85	$3.8020(16)$	168
C6-H6 $\cdots \mathrm{S} 1$	0.93	2.82	$3.3094(15)$	114

Symmetry codes: (i) $-x+1, y-\frac{1}{2},-z+\frac{5}{2}$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

H atoms bonded to C atoms were placed in calculated positions and constrained to ride on their parent atoms $(\mathrm{C}-\mathrm{H}=0.93-0.96 \AA)$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The positions and isotropic displacement parameters of the H atoms attached to the N and O atoms were refined freely.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

References

Awad, I., Abdel-Rahman, A. \& Bakite, E. (1991). J. Chem. Technol. Biotechnol. 51, 483-486.
Bruker (1998). SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (1999). SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Escobar-Valderrama, J. L., Garcia-Tapia, J. H.,Ramirez-Ortiz, J.,Rosales, M. J., Toscano, R. A. \& Valdes-Martinez, J. (1989). Can. J. Chem. 67, 198-201.
Eweiss, N., Bahajaj, A. \& Elsherbini, E.(1986). J. Heterocycl. Chem. 23, 14511458.

Li, W. H., Yu, G. P., Liu, F. Q., Hou, B. R. \& Yu, Z. G. (2005). Acta Cryst. E61, o2058-o2060.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Xu, L.-Z., Yu, G.-P., Xu, F.-L. \& Li, W.-H. (2005). Acta Cryst. E61, o2061o2062.
Xu, L. Z., Zhang, S. S., Li, H. J. \& Jiao, K. (2002). J. Chem. Res. Chin. Univ. 18, 284-286.

[^0]: (C) 2005 International Union of Crystallography

